1.2 遗传算法-自适应策略

自适应遗传算法(Adaptive Genetic Algorithm, AGA)

自适应遗传算法的改进点在于自适应调整遗传参数,使得保持群体多样性的同时,保证了算法的收敛性。例如对于基本遗传算法,交叉、变异的概率是固定的,自适应策略则要求在进化过程中进行自适应调整:开始阶段选取较大交叉、变异概率,这样的粗略搜索过程有利于保持种群多样性,后期则调整为较小值以进行细致搜索,防止破化最优解,加快收敛速度。

自适应交叉概率

本文采用的自适应策略为根据参与交叉操作的两个个体a、b的适应度fa,fbf_a, f_b调整交叉概率:适应度越大交叉概率越小,反之同理。首先设定交叉概率区间[Pmin,Pmax][P_{min}, P_{max}],然后计算种群个体适应度fif_i,及平均适应度favgf_{avg}、最大适应度fmaxf_{max},那么交叉概率PP由下式确定:

P=Pmax(f<favg) P = P_{max}\,\,\,(f < f_{avg})

P=Pmax(PmaxPmin)ffavgfmaxfavg(ffavg) P = P_{max} - (P_{max}-P_{min}) \frac{f-f_{avg}}{f_{max}-f_{avg}} \,\,\,(f \geq f_{avg})

其中,f=max(fa,fb)f=max(f_a, f_b)为参与交叉操作的两个个体中适应度较大者。

得益于之前程序的非耦合性,只需修改Crossover类即可。

import numpy as np
import copy
class Individual:
    def __init__(self, ranges):
        '''
        ranges: element range of solution, e.g. [(lb1, ub1), (lb2, ub2), ...]
        validation of ranges is skipped...
        '''
        self.ranges = np.array(ranges)
        self.dimension = self.ranges.shape[0]

        # 初始化解向量
        seeds = np.random.random(self.dimension)
        lb = self.ranges[:, 0]
        ub = self.ranges[:, 1]
#         print("seeds",seeds)
        self._selution = lb + (ub-lb)*seeds
#         print("self._solution",self._selution)

        # 评估与适应度
        self.evaluation = None
        self.fitness = None

    @property
    def solution(self):
        return self._selution

    @solution.setter
    def solution(self, solution):
        assert self.dimension == solution.shape[0]
        assert (solution>=self.ranges[:,0]).all() and (solution<=self.ranges[:,1]).all()
        self._selution = solution

class Population:
    def __init__(self, individual, size=50):
        '''
        individual: 个体
        size: 个体数量
        '''
        self.individual = individual
        self.size = size
        self.individuals = None

    def initialize(self):
        '''初始化下一代'''
        IndvClass = self.individual.__class__
        self.individuals = np.array([IndvClass(self.individual.ranges) for i in range(self.size)], dtype=IndvClass)

    def best(self, fun_evaluation, fun_fitness=None):
        '''得到最好的个体'''
        _, evaluation = self.fitness(fun_evaluation, fun_fitness)
        pos = np.argmin(evaluation)
        return self.individuals[pos]

    def fitness(self, fun_evaluation, fun_fitness=None):
        '''
        为每个个体计算目标值和适应度
        fun_evaluation: 目标函数 
        fun_fitness: 有估计值计算适应度 
        '''
        if not fun_fitness:
            fun_fitness = lambda x:x 

        evaluation = np.array([fun_evaluation(I.solution) if I.evaluation is None else I.evaluation for I in self.individuals])
#         print(evaluation.shape)

        fitness = fun_fitness(evaluation)
        fitness /= np.sum(fitness)
#         print(fitness.shape)

        for I,e,f in zip(self.individuals, evaluation, fitness):
            I.evaluation = e 
            I.fitness = f 

        return fitness, evaluation
#=====================选择==========================
class Selection:
    '''选择操作的基类'''
    def select(self, population, fitness):
        raise NotImplementedError

class RouletteWheelSelection(Selection):
    '''
    用轮盘赌选择群体  
    群体中使用适应度函数选择个体 
    '''
    def select(self, population, fitness):
        selected_individuals = np.random.choice(population.individuals, population.size, p=fitness)

        population.individuals = np.array([copy.deepcopy(I) for I in selected_individuals])

P=Pmax(f<favg) P = P_{max}\,\,\,(f < f_{avg})

P=Pmax(PmaxPmin)ffavgfmaxfavg(ffavg) P = P_{max} - (P_{max}-P_{min}) \frac{f-f_{avg}}{f_{max}-f_{avg}} \,\,\,(f \geq f_{avg})

#=====================交叉==========================
class Crossover:
    def __init__(self, rate=0.8, alpha=0.5):
        '''
        rate: 交叉概率 
        alpha: '''
        self.rate = rate
        self.alpha = alpha

    @staticmethod
    def cross_individuals(individual_a, individual_b, alpha):
        '''交叉操作
        alpha: 线性插值银因子,当alpha=0.0, 两个基因焦交换
        '''
        pos = np.random.rand(individual_a.dimension) <= 0.5

        temp = (individual_b.solution - individual_a.solution)*pos * (1-alpha)
        new_value_a = individual_a.solution + temp
        new_value_b = individual_b.solution - temp

        new_individual_a = Individual(individual_a.ranges)
        new_individual_b = Individual(individual_b.ranges)

        new_individual_a.solution = new_value_a
        new_individual_b.solution = new_value_b

        return new_individual_a, new_individual_b

    def cross(self, population):
        adaptive = isinstance(self.rate, list)
        if adaptive:
            fitness = [I.fitness for I in population.individuals]
            fit_max, fit_avg = np.max(fitness), np.mean(fitness)

        new_individuals = []
        random_population = np.random.permutation(population.individuals)
        num = int(population.size/2.0)+1

        for individual_a,individual_b in zip(population.individuals[0:num+1], random_population[0:num+1]):
            if adaptive:
                fit = max(individual_a.fitness, individual_b.fitness)
                if fit_max-fit_avg:
                    i_rate = self.rate[1] if fit<fit_avg else self.rate[1]-(self.rate[1]-self.rate[0])*(fit-fit_avg)/(fit_max-fit_avg)
                else:
                    i_rate = (self.rate[0]+self.rate[1])/2.0
            else:
                i_rate = self.rate

            if np.random.rand() <= i_rate:
                child_individuals = self.cross_individuals(individual_a, individual_b, self.alpha)
                new_individuals.extend(child_individuals)
            else: 
                new_individuals.append(individual_a)
                new_individuals.append(individual_b)

        population.individuals = np.array(new_individuals[0: population.size+1])
#         print(population.individuals)
def test():
    C = Crossover(0.9, 0.75)
    C = Crossover([0.5, 0.9], 0.75)
test()
#=====================变异==========================
class Mutation:
    def __init__(self, rate):
        self.rate = rate

    def mutate_individual(self, individual, positions, alpha):
        '''
        positions: 变异位置, list 
        alpha: 变异量
        '''
        for pos in positions:
            if np.random.rand() < 0.5:
                individual.solution[pos] -= (individual.solution[pos]-individual.ranges[:,0][pos])*alpha
            else:
                individual.solution[pos] += (individual.ranges[:,1][pos]-individual.solution[pos])*alpha

        individual.evaluation = None
        individual.fitness = None

    def mutate(self, population, alpha):
        '''alpha: 变异量'''
        for individual in population.individuals:
            if np.random.rand() > self.rate:
                continue
#             print(individual)
            num = np.random.randint(individual.dimension)+1
            pos = np.random.choice(individual.dimension, num, replace=False)
            self.mutate_individual(individual, pos, alpha)

变异度自适应

前文的变异操作由变异概率和变异程度(下式中的α\alpha)共同决定:

g=g(gL)α(rand()0.5) g = g - (g-L)\alpha\,\,\,(rand() \leq 0.5) g=g+(Ug)α(rand()>0.5) g = g + (U-g)\alpha\,\,\,(rand()>0.5)

为了使种群在进化的后期趋于稳定,应减小变异作用。相应措施为减小变异概率或者变异程度,本文采用与进化代数负相关的变异程度值,即设置α\alpha与进化代数nn,总代数NN的关系为:

相应地,仅需修改GA模块遗传算法类GA的run()函数:

class GA:
    def __init__(self, population, selection, crossover, mutation, fun_fitness=None):
        self.population = population
        self.selection = selection
        self.crossover = crossover
        self.mutation = mutation
        self.fun_fitness = fun_fitness if fun_fitness else (lambda x:np.arctan(-x)+np.pi)

    def run(self, fun_evaluation, gen=50):
        self.population.initialize()

        for n in range(1, gen+1):
            fitness, _ = self.population.fitness(fun_evaluation, self.fun_fitness)

            self.selection.select(self.population, fitness)

            self.crossover.cross(self.population)

            #  self.mutation.mutate(self.population, np.random.rand())
            mutation_rate = 1.0 - np.random.rand()**(1.0-n/gen)
            self.mutation.mutate(self.population, mutation_rate)


        return self.population.best(fun_evaluation, self.fun_fitness)

4 测试

采用二元函数Schaffer_N4进行测试,最小值点f(0,1.25313)=0.292579f(0,1.25313)=0.292579

f(x,y)=0.5+cos2[sin(x2y2)]0.5[1+0.001(x2+y2)]2,(10<=(x,y)<=10) f(x,y) = 0.5+\frac{cos^2 [sin(|x^2-y^2|)] - 0.5}{[1+0.001(x^2+y^2)]^2} , (-10<=(x,y)<=10)

schaffer_n4 = lambda x: 0.5 + (np.cos(np.sin(abs(x[0]**2-x[1]**2)))**2-0.5) / (1.0+0.001*(x[0]**2+x[1]**2))**2  

I = Individual([(-10,10)]*2)
P = Population(I, 50)
S = RouletteWheelSelection()
C = Crossover([0.5,0.9], 0.75)
M = Mutation(0.2)
g = GA(P, S, C, M)

res = []
for i in range(10):
    res.append(g.run(schaffer_n4, 500).evaluation)

val = schaffer_n4([0,1.25313])
val_ga = sum(res)/len(res)
print('the minimum: {0}'.format(val))
print('the GA minimum: {0}'.format(val_ga))
print('error: %.3f%%' % ((val_ga/val-1.0)*100))
the minimum: 0.29257863204552975
the GA minimum: 0.2940378004715706
error: 0.499%
create By cicoa            此页面修订于: 2022-06-28 03:15:43

results matching ""

    No results matching ""