1.1 遗传算法-基本原理
遗传算法学习
遗传算法(Genetic Algorithm)是美国J.Holland教授于1975年首先提出的借鉴生物进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法,目前已被广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。
0 基本原理
经典遗传算法基本过程:
- 生成初始种群
- 选择、交叉、变异操作生成下一代种群
- 重复流程
其中一些关键术语如下:
种群(Population)
参与演化的生物群体,即解的搜索空间个体(Individual)
种群的每一个成员,对应每一个可能的解染色体(Chromosome)
对应问题的解向量基因(Gene)
解向量的一个分量,或者编码后的解向量的一位适应度(Fitness)
体现个体的生存能力,与目标函数相关的函数
遗传算子(Operator)
个体的演化操作,包括选择、交叉、变异选择(Selection)
基于适应度的优胜劣汰,以一定的概率从种群中选择若干个体交叉(Crossover)
两个染色体进行基因重组变异(Mutation)
单个染色体的基因以较低概率发生随机变化
初始种群产生了一系列随机解,选择操作保证了搜索的方向性,交叉和变异拓宽了搜索空间,其中交叉操作延续父辈个体的优良基因,变异操作则可能产生比当前优势基因更优秀的个体。变异操作有利于跳出局部最优解,同时增加了随机搜索的概率,即容易发散。
遗传算法需要在过早收敛(早熟)和发散、精度和效率之间平衡。当物种多样性迅速降低即个体趋于一致,例如选择操作时过分突出优势基因的地位,结果可能只是收敛于局部最优解。当物种持续保持多样性,例如选择力度不大、变异概率太大,结果可能很难收敛,即算法效率较低。
import numpy as np
import copy
1 种群
目前仅考虑浮点数编码,因此省去了编码/解码过程——整个染色体就是解向量,每个基因是其中一个分量。
Individual
类表征个体,重要的属性为:
solution
解向量evaluation
目标函数值fitness
适应度值
Population
类表征群体,根据个体实例生成指定大小的种群,其中:
individuals
所有个体列表,Numpy的ndarray类型best
最优个体
class Individual:
def __init__(self, ranges):
'''
ranges: element range of solution, e.g. [(lb1, ub1), (lb2, ub2), ...]
validation of ranges is skipped...
'''
self.ranges = np.array(ranges)
self.dimension = self.ranges.shape[0]
# 初始化解向量
seeds = np.random.random(self.dimension)
lb = self.ranges[:, 0]
ub = self.ranges[:, 1]
# print("seeds",seeds)
self._selution = lb + (ub-lb)*seeds
# print("self._solution",self._selution)
# 评估与适应度
self.evaluation = None
self.fitness = None
@property
def solution(self):
return self._selution
@solution.setter
def solution(self, solution):
assert self.dimension == solution.shape[0]
assert (solution>=self.ranges[:,0]).all() and (solution<=self.ranges[:,1]).all()
self._selution = solution
class Population:
def __init__(self, individual, size=50):
'''
individual: 个体
size: 个体数量
'''
self.individual = individual
self.size = size
self.individuals = None
def initialize(self):
'''初始化下一代'''
IndvClass = self.individual.__class__
self.individuals = np.array([IndvClass(self.individual.ranges) for i in range(self.size)], dtype=IndvClass)
def best(self, fun_evaluation, fun_fitness=None):
'''得到最好的个体'''
_, evaluation = self.fitness(fun_evaluation, fun_fitness)
pos = np.argmin(evaluation)
return self.individuals[pos]
def fitness(self, fun_evaluation, fun_fitness=None):
'''
为每个个体计算目标值和适应度
fun_evaluation: 目标函数
fun_fitness: 有估计值计算适应度
'''
if not fun_fitness:
fun_fitness = lambda x:x
evaluation = np.array([fun_evaluation(I.solution) if I.evaluation is None else I.evaluation for I in self.individuals])
# print(evaluation.shape)
fitness = fun_fitness(evaluation)
fitness /= np.sum(fitness)
# print(fitness.shape)
for I,e,f in zip(self.individuals, evaluation, fitness):
I.evaluation = e
I.fitness = f
return fitness, evaluation
def test():
ranges = [(-10,10)] * 3
obj = lambda x:x[0]+x[1]**2 + x[2]**3
I = Individual(ranges)
P = Population(I, 100)
P.initialize()
print(P.best(obj).solution)
test()
[ 8.8008108 -0.08908596 -9.77683631]
2 遗传算子
2.1 选择
采用标准的轮盘赌(RouletteWheel)
方式,以种群中个体的适应度为参考,从中选择出同样大小的新的种群个体。从上一节种群适应度的计算可知,个体的适应度已经被归一化,因此可以直接作为轮盘赌的概率参考。
#=====================选择==========================
class Selection:
'''选择操作的基类'''
def select(self, population, fitness):
raise NotImplementedError
class RouletteWheelSelection(Selection):
'''
用轮盘赌选择群体
群体中使用适应度函数选择个体
'''
def select(self, population, fitness):
selected_individuals = np.random.choice(population.individuals, population.size, p=fitness)
population.individuals = np.array([copy.deepcopy(I) for I in selected_individuals])
交叉
从选择后的样本中随机选择两个个体a
和b
,以一定的概率进行交叉操作:将随机位置的对应基因(例如,)按系数进行线性插值,其余位置保持不变,从而得到两个新的个体a'
和b'
。
对于交叉位置的基因:
对于非交叉位置的基因:
综合起来,个体a和b所有位置的基因交叉操作可以写成向量形式:
其中,表示是否进行交叉的0-1
向量。
#=====================交叉==========================
class Crossover:
def __init__(self, rate=0.8, alpha=0.5):
'''
rate: 交叉概率
alpha: '''
self.rate = rate
self.alpha = alpha
@staticmethod
def cross_individuals(individual_a, individual_b, alpha):
'''交叉操作
alpha: 线性插值银因子,当alpha=0.0, 两个基因焦交换
'''
pos = np.random.rand(individual_a.dimension) <= 0.5
temp = (individual_b.solution - individual_a.solution)*pos * (1-alpha)
new_value_a = individual_a.solution + temp
new_value_b = individual_b.solution - temp
new_individual_a = Individual(individual_a.ranges)
new_individual_b = Individual(individual_b.ranges)
new_individual_a.solution = new_value_a
new_individual_b.solution = new_value_b
return new_individual_a, new_individual_b
def cross(self, population):
new_individuals = []
random_population = np.random.permutation(population.individuals)
num = int(population.size/2.0)+1
for individual_a,individual_b in zip(population.individuals[0:num+1], random_population[0:num+1]):
if np.random.rand() <= self.rate:
child_individuals = self.cross_individuals(individual_a, individual_b, self.alpha)
new_individuals.extend(child_individuals)
else:
new_individuals.append(individual_a)
new_individuals.append(individual_b)
population.individuals = np.array(new_individuals[0: population.size+1])
# print(population.individuals)
2.3变异
浮点数编码个体的变异操作为将随即位置的基因g
增加或减少一个随机值。这个随机值由允许变化区间乘以一个[0,1]
区间的随机数来确定。例如基因g
的区间为[L,U]
,则变异后的基因g'
:
#=====================变异==========================
class Mutation:
def __init__(self, rate):
self.rate = rate
def mutate_individual(self, individual, positions, alpha):
'''
positions: 变异位置, list
alpha: 变异量
'''
for pos in positions:
if np.random.rand() < 0.5:
individual.solution[pos] -= (individual.solution[pos]-individual.ranges[:,0][pos])*alpha
else:
individual.solution[pos] += (individual.ranges[:,1][pos]-individual.solution[pos])*alpha
individual.evaluation = None
individual.fitness = None
def mutate(self, population, alpha):
'''alpha: 变异量'''
for individual in population.individuals:
if np.random.rand() > self.rate:
continue
# print(individual)
num = np.random.randint(individual.dimension)+1
pos = np.random.choice(individual.dimension, num, replace=False)
self.mutate_individual(individual, pos, alpha)
3. 遗传算法
本次实现的遗传算法默认求最小值,因此适应度函数应为目标函数值的反函数。并且考虑到它将作为选择概率,即函数值应非负。于是,此处设置为如下形式:
class GA:
def __init__(self, population, selection, crossover, mutation, fun_fitness=lambda x:np.arctan(-x)+np.pi):
self.population = population
self.selection = selection
self.crossover = crossover
self.mutation = mutation
self.fun_fitness = fun_fitness
def run(self, fun_evaluation, gen=50):
self.population.initialize()
for n in range(1, gen+1):
fitness, _ = self.population.fitness(fun_evaluation, self.fun_fitness)
self.selection.select(self.population, fitness)
self.crossover.cross(self.population)
self.mutation.mutate(self.population, np.random.rand())
return self.population.best(fun_evaluation, self.fun_fitness)
4 测试
采用二元函数Schaffer_N4
进行测试,最小值点。
schaffer_n4 = lambda x: 0.5 + (np.cos(np.sin(abs(x[0]**2-x[1]**2)))**2-0.5) / (1.0+0.001*(x[0]**2+x[1]**2))**2
I = Individual([(-10,10)]*2)
P = Population(I, 50)
S = RouletteWheelSelection()
C = Crossover(0.9, 0.8)
M = Mutation(0.2)
g = GA(P, S, C, M)
res = []
for i in range(10):
res.append(g.run(schaffer_n4, 500).evaluation)
val = schaffer_n4([0,1.25313])
val_ga = sum(res)/len(res)
print('the minimum: {0}'.format(val))
print('the GA minimum: {0}'.format(val_ga))
print('error: %.3f%%' % ((val_ga/val-1.0)*100))
the minimum: 0.29257863204552975
the GA minimum: 0.3029075758279885
error: 3.530%